кинематика - ορισμός. Τι είναι το кинематика
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι кинематика - ορισμός

РАЗДЕЛ МЕХАНИКИ, ИЗУЧАЮЩИЙ МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ДВИЖЕНИЯ МАТЕРИАЛЬНЫХ ТОЧЕК

Кинематика         
(от греч. kínema, родительный падеж kinematos - движение)

раздел механики (См. Механика), посвященный изучению геометрических свойств движений без учета их масс и действующих на них сил. Излагаемое ниже относится к К. движений, рассматриваемых в классической механике (движение макроскопических тел со скоростями, малыми по сравнению со скоростью света). О К. движений со скоростями, близкими к скоростям света, см. Относительности теория, а о движениях микрочастиц - Квантовая механика.

Устанавливаемые в К. методы и зависимости используются при кинематических исследованиях движений, в частности при расчётах передач движений в различных механизмах, машинах и др., а также при решении задач динамики (См. Динамика). В зависимости от свойств изучаемого объекта К. разделяют на К. точки, К. твёрдого тела и К. непрерывной изменяемой среды (деформируемого тела, жидкости, газа).

Движение любого объекта в К. изучают по отношению к некоторому телу (тело отсчёта); с ним связывают так называемую систему отсчёта (оси х, у, z на рис. 1), с помощью которой определяют положение движущегося объекта относительно тела отсчёта в разные моменты времени. Выбор системы отсчёта в К. произволен и зависит от целей исследования. Например, при изучении движения колеса вагона по отношению к рельсу систему отсчёта связывают с землёй, а при изучении движения того же колеса по отношению к кузову вагона - с кузовом и т.д. Движение рассматриваемого объекта считается заданным (известным), если известны уравнения, называемые уравнениями движения (или графики, таблицы), позволяющие определить положение этого объекта по отношению к системе отсчёта в любой момент времени.

Основная задача К. заключается в установлении (при помощи тех или иных математических методов) способов задания движения точек или тел и в определении по уравнениям их движений соответствующих кинематических характеристик движения, таких, как траектории, скорости и ускорения движущихся точек, угловые скорости и угловые ускорения вращающихся тел и др. Для задания движения точки пользуются одним из 3 способов: естественным, координатным или векторным:

а) естественный (или траекторный), применяемый, когда известна траектория точки по отношению к выбранной системе отсчёта. Положение, точки определяется расстоянием s = O1M от выбранного на траектории начала отсчёта O1, измеренным вдоль дуги траектории и взятым с соответствующим знаком (рис. 1), а закон движения даётся уравнением s = f (t), выражающим зависимость s от времени t. Например, если задано, что s = 3t2-1, то в начальный момент времени t0 = 0, S0 = -1 м (точка находится слева от начала О на расстоянии 1 м), в момент t1 = 1 сек, S1 = 2 м (точка справа от O1 на расстоянии 2 м) и т.д. Зависимость s от t может быть также задана графиком движения, на котором в выбранном масштабе отложены вдоль оси t время, а вдоль оси s - расстояние (рис. 2), или таблицей, где в одном столбце даются значения t, а в другом соответствующие им значения s (подобный способ применяется, например, в железнодорожном расписании движения поезда).

б) Координатный, при котором положение точки относительно системы отсчёта определяется какими-нибудь тремя координатами, например прямоугольными декартовыми х, у, z, а закон движения задаётся 3 уравнениями х = f1(t), у = f2(t), z = f3(t). Исключив из этих уравнений время t, можно найти траекторию точки.

в) Векторный, при котором положение точки по отношению к системе отсчёта определяется её радиус-вектором r, проведённым от начала отсчёта до движущейся точки, а закон движения даётся векторным уравнением r = r (t). Траектория точки - Годограф вектора r.

Основными кинематическими характеристиками движущейся точки являются её скорость и ускорение, значения которых определяются по уравнениям движения через первые и вторые производные по времени от s или от х, у, z, или от r (см. Скорость, Ускорение).

Способы задания движения твёрдого тела зависят от вида, а число уравнений движения - от числа степеней свободы тела (см. Степеней свободы число). Простейшими являются Поступательное движение и Вращательное движение твёрдого тела. При поступательном движении все точки тела движутся одинаково, и его движение задаётся и изучается так же, как движение одной точки. При вращательном движении вокруг неподвижной оси z (рис. 3) тело имеет одну степень свободы; его положение определяется углом поворота φ, а закон движения задаётся уравнением φ = f (t). Основными кинематическими характеристиками являются угловая скорость ω=dφ/dt и угловое ускорение ε = dω/dt тела. Величины ω и ε изображаются в виде векторов, направленных вдоль оси вращения. Зная ω и ε, можно определить скорость и ускорение любой точки тела.

Более сложным является движение тела, имеющего одну неподвижную точку и обладающего 3 степенями свободы (например, Гироскоп, или волчок). Положение тела относительно системы отсчёта определяется в этом случае какими-нибудь 3 углами (например, Эйлера углами: углами прецессии, нутации и собственного вращения), а закон движения - уравнениями, выражающими зависимость этих углов от времени. Основными кинематическими характеристиками являются мгновенная угловая скорость ω и мгновенное угловое ускорение ε тела. Движение тела слагается из серии элементарных поворотов вокруг непрерывно меняющих своё направление мгновенных осей вращения ОР, проходящих через неподвижную точку О (рис. 4).

Самым общим случаем является движение свободного твёрдого тела, имеющего 6 степеней свободы. Положение тела определяется 3 координатами одной из его точек, называемых полюсом (в задачах динамики за полюс принимается центр тяжести тела), и 3 углами, выбираемыми так же, как для тела с неподвижной точкой; закон движения тела задаётся 6 уравнениями, выражающими зависимости названных координат и углов от времени. Движение тела слагается из поступательного вместе с полюсом и вращательного вокруг этого полюса, как вокруг неподвижной точки. Таким, например, является движение в воздухе артиллерийского снаряда или самолета, совершающего фигуры высшего пилотажа, движение небесных тел и др. Основными кинематическими характеристиками являются скорость и ускорение поступательной части движения, равные скорости и ускорению полюса, и угловая скорость и угловое ускорение вращения тела вокруг полюса. Все эти характеристики (как и кинематические характеристики для тела с неподвижной точкой) вычисляются по уравнениям движения; зная эти характеристики, можно определить скорость и ускорение любой точки тела. Частным случаем рассмотренного движения является плосконаправленное (или плоское) движение твёрдого тела, при котором все его точки движутся параллельно некоторой плоскости. Подобное движение совершают звенья многих механизмов и машин.

В К. изучают также сложное движение точек или тел, то есть движение, рассматриваемое одновременно по отношению к двум (и более) взаимно перемещающимся системам отсчета. При этом одну из систем отсчета рассматривают как основную (ее еще называют условно неподвижной), а перемещающуюся по отношению к ней систему отсчёта называют подвижной; в общем случае подвижных систем отсчёта может быть несколько.

При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе - относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу - абсолютными; скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.

Основные задачи К. сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, т. е.

νa= νoтн+ νпер,

а абсолютное ускорение точки равно геометрической сумме трёх ускорений - относительного, переносного и поворотного, или кориолисова (см. Кориолиса ускорение), т. е.

wa = woтн+wпер+wkop.

Для твердого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений (см. Винтовое движение).

В К. непрерывной среды устанавливаются способы задания движения этой среды, рассматривается общая теория деформаций и определяются так называемые уравнения неразрывности, отражающие условия непрерывности среды.

Лит. см. при ст. Механика.

С. М. Тарг.

Рис. 1 к ст. Кинематика.

Рис. 2 к ст. Кинематика.

Рис. 3 к ст. Кинематика.

Рис. 4 к ст. Кинематика.

кинематика         
ж.
1) Раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.
2) Движение звеньев механизма независимо от приложенных к ним сил.
кинематика         
КИНЕМ'АТИКА, кинематики, мн. нет, ·жен. (от ·греч. kinema - движение) (мех.). Отдел механики - учение о движении независимо от причин, его производящих.

Βικιπαίδεια

Кинематика

Кинема́тика (от др.-греч. κίνημα — «движение», род. п. κινήματος) в физике — раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики — пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения того, какую природу имеет сила, его порождающая. Причинами возникновения механического движения занимается другой раздел механики — динамика.

Различают классическую кинематику, в которой пространственные (длины отрезков) и временные (промежутки времени) характеристики движения считаются абсолютными, то есть не зависящими от выбора системы отсчёта, и релятивистскую. В последней длины отрезков и промежутки времени между двумя событиями могут изменяться при переходе от одной системы отсчёта к другой. Относительной становится также одновременность. В релятивистской механике вместо отдельных понятий пространство и время вводится понятие пространства-времени, в котором инвариантным относительно преобразований Лоренца является величина, называемая интервалом.

Παραδείγματα από το σώμα κειμένου για кинематика
1. Кинематика шасси новой машины выверена еще Infiniti G35.
2. Так, в повороте "эластичная" кинематика немного отклоняет задние колеса в направлении, противоположном углу наклона передних колес.
3. Попотели и инженеры: здесь уникальная кинематика дверей и камеры вместо зеркал заднего вида.
4. Плюс новый передний алюминиевый подрамник вместо стального штатного и иная кинематика алюминиевых рычагов.
5. Кинематика - ударная и бросковая техника - "наматывается" легко, но, чтобы продвигаться в этом направлении, надо углубляться в философию, она выводит тебя на религию, религия - на эзотерику.